metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Fa Zhang, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.002 Å R factor = 0.016 wR factor = 0.037 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A two-dimensional brick-wall layer barium(II) coordination polymer: poly[[tetraaquabarium(II)di-μ-1*H*-imidazole-4,5-dicarboxylato] dihydrate]

title two-dimensional coordination In the polymer. $\{[Ba(H_2IDC)_2(H_2O)_4]\cdot 2H_2O\}_n$ (H₂IDC⁻ is the 1*H*-imidazole-4,5-dicarboxylate monoanion, $C_5H_3N_2O_4^{-}$), each Ba^{II} atom, which lies on a crystallographic twofold rotation axis, is tencoordinated by four O atoms and two N atoms from different H₂IDC⁻ ligands, as well as four water molecules, thus defining a hexadecahedron. Four Ba^{II} atoms are linked by four different H₂IDC⁻ ligands to produce a centrosymmetric macrocyclic structure, leading to an extended two-dimensional brick-wall open framework. Furthermore, there are $\pi - \pi$ stacking interactions between adjacent parallel imidazole rings in the layer structure, and a three-dimensional supramolecular network is constructed via hydrogen-bonding and $\pi - \pi$ stacking interactions.

Comment

The construction of coordination polymers and networks by the self-assembly of polydentate ligands and metal ions is a rapidly growing area of reaseach (Andrea, 2003). *N*-Heterocyclic carboxylic acids, such as 1*H*-imidazole-4,5-dicarboxylic acid (H₃IDC), are well known as efficient N/O donors with versatile binding abilities and hydrogen bonding. H₃IDC can be successively deprotonated to generate H₂IDC⁻, HIDC²⁻ and IDC³⁻ anions, and hence may result in a variety of structural topologies (Liu *et al.*, 2004; Xiao *et al.*, 2004). Some transition metal complexes with one-dimensional chain structures for Mn, Cu and Cd (Zhang *et al.*, 2004; Gao, Gu *et al.*, 2004; Gao, Liu *et al.*, 2004), and two-dimensional layer structures for Mn and Fe (Gao *et al.*, 2005; Xu *et al.*, 2004), have been reported to date. Compared with the extensively investigated transition metal coordination polymers, it is

Figure 1

ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $z + \frac{1}{2}$; (*A*) $-x - \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$]

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 24 October 2005 Accepted 31 October 2005 Online 5 November 2005

Figure 2

Hexadecahedral coordination of the Ba atom in the title complex. [Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.]

surprising to see the relatively small number of alkaline earth coordination polymers. Recently, we have reported the structure of a mononuclear calcium complex (Gao, Zhang *et al.*, 2004), in which the Ca^{II} atom shows an eight-coordinated distorted bicapped triangular prismatic configuration and the H₃IDC ligand acts in a bidentate chelating mode. In order to study further the behavior of alkaline earth metals with the H₃IDC ligand, we obtained a two-dimensional brick-wall layer barium coordination polymer, $[Ba(H_2IDC)_2(H_2O)_4]_n.2nH_2O$, (I), for which the synthesis and structure are reported here.

As shown in Fig. 1, the crystal structure is composed of a $[Ba(H_2IDC)_2(H_2O)_4]$ complex and two uncoordinated water molecules; the carboxylate (H_2IDC^-) ligand bears a formal charge of -1 and binds in a tridentate coordination mode, and the free carboxylate atoms O2 and O3, and atom N2 and water O3*w* form two of the hydrogen bonds (Table 2). The Ba^{II} atom occupies a special position having crystallographic twofold rotation symmetry. Each Ba^{II} atom is ten-coordinated by four O atoms and two N atoms from different H₂IDC⁻ ligands, as well as four water molecules, thus defining a hexadecahedron (Fig. 2). The angles around the Ba^{II} atom are distributed over a broad range, 56.46 (4)–163.52 (7)° (Table 1). The Ba-O_{carboxylate} distances fall in the range 2.8629 (15)–

The macrocyclic structure formed by four Ba^{II} atoms and four different H₂IDC⁻ anions. H atoms and free water molecules have been omitted. [Symmetry codes: $(A) - x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}; (B) - x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}; (C) x + \frac{1}{2}, y + \frac{1}{2}, z.$]

2.8793 (14) Å, and are considerably shorter than the maximum Ba–O value [3.161 (2) Å] in a reported Ba complex (Bouayad *et al.*, 1995). The dihedral angles between the carboxylate groups and the imidazole ring are 2.3 (5)° (C4 group) and 4.5 (5)° (C5 group).

The H₂IDC⁻ ligand displays two different kinds of coordination behavior, distinguished by the direction of the Ba-O bonds relative to the carboxylate plane. First, the ligand binds to one Ba^{II} atom in an N,O-bidentate coordination mode through imidazole atom N1 and carboxylate atom O4, forming a five-membered chelate ring. Secondly, the ligand acts in a monodentate coordination mode through carboxylate atom O1, the Ba1 \cdots Ba1A separation being 9.597 (3) Å (symmetry codes for $Ba \cdots Ba$ separations are as in Fig. 3). Consequently, as a result of these individual mono- and bidentate modes, a centrosymmetric macrocyclic structure is formed by four Ba^{II} atoms and four different H₂IDC⁻ anions (Fig. 3), the Ba1···Ba1C and Ba1A···Ba1B separations being 6.765 (3) and 17.962 (3) Å, respectively. As a consequence of the H₂IDC⁻ bridges, polymeric (I) has an extended two-dimensional brick-wall layer structure, with alternating organic and inorganic sheets (Fig. 4).

There are $\pi - \pi$ stacking interactions between adjacent parallel imidazole rings, the centroid–centroid separation being 3.735 (3) Å. Furthermore, the water molecules, uncoordinated imidazole N2 atom and carboxyl O atoms form intermolecular hydrogen bonds (Table 2), consolidating the crystal structure and leading to a three-dimensional supramolecular network.

Experimental

The title polymeric complex was prepared by the reaction of BaCl₂·2H₂O (2.40 g, 10 mmol) and H₃IDC (1.54 g, 10 mmol) in aqueous solution. The mixture was sealed in a 50 ml Teflon-lined stainless steel bomb and held at 423 K for five days. The bomb was then allowed to cool naturally to room temperature, and colorless prismatic crystals of (I) were obtained. Analysis calculated for $C_{10}H_{18}BaN_4O_{14}$: C 21.62, H 3.27, N 10.08%; found: C 21.65, H 3.25, N 10.11%.

metal-organic papers

 $D_x = 2.048 \text{ Mg m}^{-3}$

Cell parameters from 7944

Mo $K\alpha$ radiation

reflections

 $\theta = 3.2-27.5^{\circ}$ $\mu = 2.29 \text{ mm}^{-1}$

T = 295 (2) K

Prism, colorless

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -23 \rightarrow 23$

 $k = -8 \rightarrow 8$

 $l = -18 \rightarrow 19$

 $0.35 \times 0.24 \times 0.18 \ \text{mm}$

2069 independent reflections 1947 reflections with $I > 2\sigma(I)$

Crystal data

$$\begin{split} & [\text{Ba}(\text{C}_{3}\text{H}_{3}\text{N}_{2}\text{O}_{4})_{2}(\text{H}_{2}\text{O})_{4}]\cdot\text{2}\text{H}_{2}\text{O} \\ & M_{r} = 555.61 \\ & \text{Monoclinic, } C2/c \\ & a = 17.962 \ (4) \ \text{\AA} \\ & b = 6.7649 \ (14) \ \text{\AA} \\ & c = 14.892 \ (3) \ \text{\AA} \\ & \beta = 95.22 \ (3)^{\circ} \\ & V = 1802.0 \ (7) \ \text{\AA}^{3} \\ & Z = 4 \end{split}$$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.521, T_{max} = 0.665$ 8564 measured reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0169P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.016$ $w = 1/[\sigma^2(F_o^2) + (0.0169P)^2$
 $wR(F^2) = 0.037$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.10 $(\Delta/\sigma)_{max} = 0.001$

 2069 reflections
 $\Delta\rho_{max} = 0.33$ e Å⁻³

 153 parameters
 $\Delta\rho_{min} = -0.46$ e Å⁻³

 H atoms treated by a mixture of independent and constrained refinement
 σ^2

Table 1

Selected geometric parameters (Å, °).

Ba1-N1	2.9662 (16)	$Ba1 - O2w^i$	2.8501 (15)
Ba1-N1 ⁱ	2.9662 (16)	Ba1-O4	2.8629 (15)
Ba1-O1 ⁱⁱ	2.8793 (14)	Ba1-O4 ⁱ	2.8629 (15)
Ba1-O1 ⁱⁱⁱ	2.8793 (14)	O1-C4	1.241 (2)
Ba1-O1w	2.9104 (15)	O2-C4	1.273 (2)
$Ba1 - O1w^i$	2.9104 (15)	O3-C5	1.298 (2)
Ba1–O2w	2.8501 (15)	O4-C5	1.224 (2)
O1 ⁱⁱ -Ba1-N1	135.72 (4)	O2w-Ba1-O1w	143.96 (4)
O1 = Ba1 = N1 $O1^{ii} = Ba1 = N1^{i}$	• • • •		· · ·
	68.47 (4)	$O2w-Ba1-O1w^{1}$	77.45 (4)
$O1^{ii}$ - Ba1 - $O1^{iii}$	68.98 (5)	$O2w^i$ -Ba1-O2w	67.13 (6)
$O1^{ii}$ -Ba1-O1w	66.93 (4)	O2w-Ba1-O4	104.15 (4)
O1 ⁱⁱ -Ba1-O1w ⁱ	78.87 (4)	O4-Ba1-N1 ⁱ	119.46 (4)
O1w-Ba1-N1	115.40 (5)	O4-Ba1-N1	56.46 (4)
$O1w-Ba1-N1^{i}$	73.82 (5)	O4-Ba1-O1 ⁱⁱ	120.79 (4)
O1w ⁱ -Ba1-O1w	138.44 (6)	O4-Ba1-O1 ⁱⁱⁱ	74.00 (4)
O2w-Ba1-N1	71.21 (5)	$O4-Ba1-O1w^{i}$	125.14 (4)
$O2w-Ba1-N1^{i}$	88.24 (5)	O4-Ba1-O1w	61.72 (4)
$O2w-Ba1-O1^{iii}$	131.81 (4)	O4 ⁱ -Ba1-O4	163.52 (7)
$O2w-Ba1-O1^{ii}$	134.99 (4)	N1 ⁱ -Ba1-N1	155.55 (6)

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···O2	0.85 (2)	1.62 (2)	2.4635 (19)	173 (3)
$N2-H2\cdots O3w$	0.86	1.92	2.775 (2)	175
$O1w - H1w1 \cdots O2^{ii}$	0.85 (2)	1.93 (2)	2.7752 (19)	174 (2)
$O1w - H1w2 \cdots O4^{iv}$	0.85 (3)	2.09 (3)	2.880 (2)	156 (2)
$O2w - H2w1 \cdots O3w^{v}$	0.84 (3)	2.36 (3)	3.102 (3)	148 (2)
$O2w - H2w2 \cdot \cdot \cdot O1^{vi}$	0.84(2)	2.15 (2)	2.980 (2)	170(2)
$O3w - H3w2 \cdots O1w^{vi}$	0.85 (3)	2.14 (2)	2.965 (2)	163 (3)
$O3w - H3w1 \cdots O2w^{vii}$	0.85(2)	2.24 (2)	2.951 (2)	142 (2)
$O3w - H3w1 \cdots O2^{viii}$	0.84 (2)	2.52 (2)	3.173 (2)	135 (2)

Symmetry codes: (ii) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) -x + 1, -y + 1, -z + 1; (v) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (vi) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (viii) $x, -y + 1, z - \frac{1}{2}$.

A two-dimensional layer of the title complex. Hydrogen bonds, H atoms and uncoordinated water molecules have been omitted.

H atoms on C and N atoms were placed in calculated positions, with C-H = 0.93 Å, N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$, and were refined in the riding-model approximation. Oxygen-bound H atoms were located in a difference Fourier map and refined with O-H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

- Andrea, E. (2003). Coord. Chem. Commun. 246, 203-228.
- Bouayad, A., Trombe, J. C. & Gleizes, A. (1995). *Inorg. Chim. Acta*, 230, 1–7.
 Gao, S., Gu, C.-S., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). *Acta Cryst.* E60, m1672–m1674.
- Gao, S., Huo, L.-H., Zhao, H. & Liu, J.-W. (2005). Acta Cryst. E61, m155-m157.
- Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, J. G. (2004). Acta Cryst. E60, m1728– m1730.
- Gao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m1790–m1792.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Liu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1697-m1699.
- Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Xiao, H.-P., Li, X.-H. & Shi, Q. (2004). Acta Cryst. E60, m1519-m1521.
- Xu, Y., Wang, R.-H., Lou, B.-Y., Han, L. & Hong, M.-C. (2004). Acta Cryst. C60, m296–m298.
- Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m12– m13.