Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xian-Fa Zhang, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.016$
$w R$ factor $=0.037$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

A two-dimensional brick-wall layer barium(II) coordination polymer: poly[[tetraaquabarium(II)-di- μ-1 H -imidazole-4,5-dicarboxylato] dihydrate]

In the title two-dimensional coordination polymer, $\left\{\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{IDC}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}\left(\mathrm{H}_{2} \mathrm{IDC}^{-}\right.$is the $1 H$-imidazole-4,5-dicarboxylate monoanion, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{-}$), each $\mathrm{Ba}^{\mathrm{II}}$ atom, which lies on a crystallographic twofold rotation axis, is tencoordinated by four O atoms and two N atoms from different $\mathrm{H}_{2} \mathrm{IDC}^{-}$ligands, as well as four water molecules, thus defining a hexadecahedron. Four $\mathrm{Ba}^{\text {II }}$ atoms are linked by four different $\mathrm{H}_{2} \mathrm{IDC}^{-}$ligands to produce a centrosymmetric macrocyclic structure, leading to an extended two-dimensional brick-wall open framework. Furthermore, there are $\pi-\pi$ stacking interactions between adjacent parallel imidazole rings in the layer structure, and a three-dimensional supramolecular network is constructed via hydrogen-bonding and $\pi-\pi$ stacking interactions.

Comment

The construction of coordination polymers and networks by the self-assembly of polydentate ligands and metal ions is a rapidly growing area of reaseach (Andrea, 2003). N-Heterocyclic carboxylic acids, such as 1 H -imidazole-4,5-dicarboxylic acid (H_{3} IDC), are well known as efficient N/O donors with versatile binding abilities and hydrogen bonding. H_{3} IDC can be successively deprotonated to generate $\mathrm{H}_{2} \mathrm{IDC}^{-}$, HIDC $^{2-}$ and IDC^{3-} anions, and hence may result in a variety of structural topologies (Liu et al., 2004; Xiao et al., 2004). Some transition metal complexes with one-dimensional chain structures for Mn, Cu and Cd (Zhang et al., 2004; Gao, Gu et al., 2004; Gao, Liu et al., 2004), and two-dimensional layer structures for Mn and Fe (Gao et al., 2005; Xu et al., 2004), have been reported to date. Compared with the extensively investigated transition metal coordination polymers, it is

Figure 1
ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;(A)-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.]

Received 24 October 2005 Accepted 31 October 2005 Online 5 November 2005

Figure 2
Hexadecahedral coordination of the Ba atom in the title complex. [Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2}$, $-z+\frac{1}{2}$.]
surprising to see the relatively small number of alkaline earth coordination polymers. Recently, we have reported the structure of a mononuclear calcium complex (Gao, Zhang et al., 2004), in which the $\mathrm{Ca}^{\mathrm{II}}$ atom shows an eight-coordinated distorted bicapped triangular prismatic configuration and the H_{3} IDC ligand acts in a bidentate chelating mode. In order to study further the behavior of alkaline earth metals with the H_{3} IDC ligand, we obtained a two-dimensional brick-wall layer barium coordination polymer, $\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{IDC}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n} \cdot 2 n \mathrm{H}_{2} \mathrm{O}$, (I), for which the synthesis and structure are reported here.

(I)

As shown in Fig. 1, the crystal structure is composed of a $\left[\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{IDC}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ complex and two uncoordinated water molecules; the carboxylate $\left(\mathrm{H}_{2} \mathrm{IDC}^{-}\right)$ligand bears a formal charge of -1 and binds in a tridentate coordination mode, and the free carboxylate atoms O 2 and O 3 , and atom N 2 and water $\mathrm{O} 3 w$ form two of the hydrogen bonds (Table 2). The $\mathrm{Ba}^{\mathrm{II}}$ atom occupies a special position having crystallographic twofold rotation symmetry. Each $\mathrm{Ba}^{\text {II }}$ atom is ten-coordinated by four O atoms and two N atoms from different $\mathrm{H}_{2} \mathrm{IDC} C^{-}$ligands, as well as four water molecules, thus defining a hexadecahedron (Fig. 2). The angles around the $\mathrm{Ba}^{\mathrm{II}}$ atom are distributed over a broad range, 56.46 (4)-163.52 (7) ${ }^{\circ}$ (Table 1). The $\mathrm{Ba}-$ $\mathrm{O}_{\text {carboxylate }}$ distances fall in the range $2.8629(15)-$

Figure 3
The macrocyclic structure formed by four $\mathrm{Ba}^{\mathrm{II}}$ atoms and four different $\mathrm{H}_{2} \mathrm{IDC}^{-}$anions. H atoms and free water molecules have been omitted. [Symmetry codes: (A) $-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;(B)-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;(C)$ $x+\frac{1}{2}, y+\frac{1}{2}, z$.]
$2.8793(14) \AA$, and are considerably shorter than the maximum $\mathrm{Ba}-\mathrm{O}$ value $[3.161$ (2) \AA] in a reported Ba complex (Bouayad et al., 1995). The dihedral angles between the carboxylate groups and the imidazole ring are $2.3(5)^{\circ}(\mathrm{C} 4$ group) and 4.5 (5) (C5 group).

The $\mathrm{H}_{2} \mathrm{IDC}^{-}$ligand displays two different kinds of coordination behavior, distinguished by the direction of the $\mathrm{Ba}-\mathrm{O}$ bonds relative to the carboxylate plane. First, the ligand binds to one $\mathrm{Ba}^{\mathrm{II}}$ atom in an N, O-bidentate coordination mode through imidazole atom N1 and carboxylate atom O 4 , forming a five-membered chelate ring. Secondly, the ligand acts in a monodentate coordination mode through carboxylate atom O1, the $\mathrm{Ba} 1 \cdots \mathrm{Ba} 1 A$ separation being 9.597 (3) \AA (symmetry codes for $\mathrm{Ba} \cdots \mathrm{Ba}$ separations are as in Fig. 3). Consequently, as a result of these individual mono- and bidentate modes, a centrosymmetric macrocyclic structure is formed by four $\mathrm{Ba}^{\mathrm{II}}$ atoms and four different $\mathrm{H}_{2} \mathrm{IDC}^{-}$anions (Fig. 3), the $\mathrm{Ba} 1 \cdots \mathrm{Ba} 1 C$ and $\mathrm{Ba} 1 A \cdots \mathrm{Ba} 1 B$ separations being 6.765 (3) and 17.962 (3) \AA, respectively. As a consequence of the $\mathrm{H}_{2} \mathrm{IDC}^{-}$bridges, polymeric (I) has an extended two-dimensional brick-wall layer structure, with alternating organic and inorganic sheets (Fig. 4).

There are $\pi-\pi$ stacking interactions between adjacent parallel imidazole rings, the centroid-centroid separation being 3.735 (3) Å. Furthermore, the water molecules, uncoordinated imidazole N 2 atom and carboxyl O atoms form intermolecular hydrogen bonds (Table 2), consolidating the crystal structure and leading to a three-dimensional supramolecular network.

Experimental

The title polymeric complex was prepared by the reaction of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.40 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{IDC}(1.54 \mathrm{~g}, 10 \mathrm{mmol})$ in aqueous solution. The mixture was sealed in a 50 ml Teflon-lined stainless steel bomb and held at 423 K for five days. The bomb was then allowed to cool naturally to room temperature, and colorless prismatic crystals of (I) were obtained. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BaN}_{4} \mathrm{O}_{14}$: C 21.62, H3.27, N 10.08\%; found: C $21.65, \mathrm{H} 3.25, \mathrm{~N}$ 10.11\%.

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=555.61$
Monoclinic, C2/c
$a=17.962$ (4) A
$b=6.7649$ (14) A
$c=14.892$ (3) \AA
$\beta=95.22$ (3) ${ }^{\circ}$
$V=1802.0(7) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.521, T_{\text {max }}=0.665$
8564 measured reflections
$D_{x}=2.048 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7944 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=2.29 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.35 \times 0.24 \times 0.18 \mathrm{~mm}$

2069 independent reflections
1947 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-23 \rightarrow 23$
$k=-8 \rightarrow 8$
$l=-18 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0169 P)^{2} \\
&+2.0363 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.33 \text { e } \AA^{-3}
\end{aligned}
$$

$S=1.10$
2069 reflections
153 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 4
A two-dimensional layer of the title complex. Hydrogen bonds, H atoms and uncoordinated water molecules have been omitted.

H atoms on C and N atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, and were refined in the riding-model approximation. Oxygen-bound H atoms were located in a difference Fourier map and refined with $\mathrm{O}-$ H and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) \AA, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

Andrea, E. (2003). Coord. Chem. Commun. 246, 203-228.
Bouayad, A., Trombe, J. C. \& Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1-7.
Gao, S., Gu, C.-S., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m1672-m1674.
Gao, S., Huo, L.-H., Zhao, H. \& Liu, J.-W. (2005). Acta Cryst. E61, m155-m157.
Gao, S., Liu, J.-W., Huo, L.-H. \& Zhao, J. G. (2004). Acta Cryst. E60, m1728m1730.
Gao, S., Zhang, X.-F., Huo, L.-H. \& Zhao, H. (2004). Acta Cryst. E60, m1790m1792.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m1697-m1699.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Xiao, H.-P., Li, X.-H. \& Shi, Q. (2004). Acta Cryst. E60, m1519-m1521.
Xu, Y., Wang, R.-H., Lou, B.-Y., Han, L. \& Hong, M.-C. (2004). Acta Cryst. C60, m296-m298.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004). Acta Cryst. E60, m12m13.

[^0]: (C) 2005 International Union of Crystallography

